Question Number	Answer	Additional Guidance	Mark
1(a)(i)	℃ −−		
	C		(1)

Question Number	Answer	Additional Guidance	Mark
1(a)(ii)	G - A - U - U - C - A - C - G - U		(1)

Question Number				Answer	Additional Guidance	Mark
1(a)(iii)	с ³	1	4	2		(1)

Question Number	Answer	Additional Guidance	Mark
1(b)(i)	8		(1)

Question Number	Answer	Additional Guidance	Mark
1(b)(ii)	6		(1)

Question Number	Answer	Additional Guidance	Mark
1(c)	 DNA is {double stranded/ has a double helix} and RNA is {single stranded / does not have a double helix}; 	1. ACC T mixtures e.g. DNA double helix mRNA is single strand IGNORE hydrogen bonds	
	2. DNA has { thymine / T } while RNA has { uracil / U } ;	2.NOT thiamine, thyamine	
	3. DNA has deoxyribose while RNA has ribose ;		
	4. DNA is { larger / longer } than RNA / eq ;		
			(3)

Question Number	Answer	Additional Guidance	Mark
2 (a)	idea that the (RNA) nucleotides attach to this	ACCEPT complementary to RNA nucelotides,	
	strand	codes for mRNA,	
	OR	{part of the DNA / antisense } strand that the	
	idea of {nucleotide / base } sequence that directs	mRNA is built along,	
	the synthesis of {complementary sequence /	NOT DNA nucleotides, plural strands	
	mRNA / eq} ;		(1)

Question Number		Answer	Mark
2 (b)(i)	D	have a sugar-phosphate chain ;	(1)

Question Number	Answer	Mark
2 (b)(ii)	C semi-conservative replication is possible ;	(1)

Question Number	Answer	Mark
2(b) (iii)	A 10% ;	(1)

Question Number		Answer									Additional Guidance	Mark			
2 (c)															
	U	G	А	А	А	G	с	G	G	G	с	U			
	1. b	oth u	iracils	s corr	ect;	1	1	1		1	1	1			
	2. tl	he re	st of	the s	equer	nce co	orrect	;							(2)

Question Number		ŀ	Answer	Additional Guidance	Mark
2 (d)	Any	three from:		Must be clearly comparative for the mark IGNORE destination of the	
		replication	transcription	molecules	
	1	uses DNA nucleotides	uses RNA nucleotides / eq ;	1. ACCEPT thymine / T, uracil / U comparison, deoxyribose and ribose,	
	2	uses DNA polymerase / eq	does not use DNA polymerase / uses RNA polymerase ;	DNA and RNA bases 2. ACCEPT no ligase in transcription	
	3	reference to semi- conservative	not semi-conservative / eq ;		
	4	(copies) both DNA strands / eq	(copies) only {one strand / template / gene / eq} ;	4. ACCEPT whole DNA molecule unzipped for replication with only part for transcription ACCEPT all {DNA / genome}	
	5	makes DNA double helix / eq	Makes single strand mRNA / eq ;	copied in replication only part in transcription 5. NOT just produces DNA and mRNA	
				ACCEPT two {new strands of DNA / DNA molecules} compared to one mRNA (each time) ACCEPT if clear what is being produced elsewhere in the response	(3)